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Rings and the Hierarchy of Commutative Rings

Given an abelian group (R,+) equipped with a map · : R×R→ R that sends (r, s) 7→ r · s, we say

that the triple (R,+, ·) is a ring whenever the following properties hold for R.

(i.) The map · is associative, i.e., we have that r · (s · t) = (r · s) · t for any r, s, and t in R.

(ii.) The map · is distributive, i.e., we have that r · (s+ t) = r · s+ r · t and (r+ s) · t = r · t+ s · t
for any elements r, s, and t in R.

(iii.) There exists an element 1R of R such that 1R · r = r = r · 1R for all elements r of R.

Corollary 1. For every element r of a ring, we have that r0R = 0R.

Proof. We leave the proof as an exercise for the reader.

One can show that the element 1R is unique; it is the multiplicative identity (or unity) of R.

Remark 1. Even though this situation is growing increasingly uncommon over time, it is possible

to come across an author who defines a ring as an abelian group with a multiplication that satisfies

properties (i.) and (ii.) but not necessarily property (iii.). We refer to such an algebraic structure

as a rng because it has no “i”dentity; however, these authors refer to our rings as unital rings.

Remark 2. Given an element r of R such that there exists an element s of R with rs = 1R = sr, we

refer to r as a unit. One can show that the element s is unique; it is the multiplicative inverse

of r, hence we may write s = r−1. We have made no assumption that every nonzero element of R

has a multiplicative inverse; in fact, a ring with this property is called a skew field.

Usually, we will omit the multiplicative notation · of R and simply use concatenation, e.g., r ·s def
= rs.

Given a nonempty set S ⊆ R, we say that S is a subring of R whenever S is a ring with respect

to the operation of R. Often, it is convenient to use the following proposition.

Proposition 1. (Subring Test) Given a ring R and a set S ⊆ R containing 1R such that for all

elements r and s in S, we have that r − s and rs are in S, it follows that S is a subring of R.

Q3a, August 2015. Given the polynomial f(x) = x3 + 2 (viewed as an element of the polynomial

ring Z[x]) and a root α of f(x) in C, consider the set K = Q(α) of rational functions in α with

rational coefficients. Prove that the set R = {a+ bα + cα2 | a, b, c ∈ Z} is a subring of K.
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Our primary focus will involve commutative rings, i.e., rings for which the multiplication is com-

mutative (so that rs = sr for all r and s in R); however, there exist noncommutative rings.

Example 1. Given a positive integer n, consider the set Zn×n of n×n matrices with integer entries.

Observe that Zn×n is a ring with respect to matrix addition and matrix multiplication: its identity

is the identity matrix In whose (i, j)th entry is the Kronecker delta δij for all integers 1 ≤ i, j ≤ n.

We note that Zn×n is noncommutative for any integer n ≥ 2 because for any integers a, b, c and d

such that ac 6= bc and ad 6= bd, we have that ( a 0
0 b )( 0 c

d 0 ) 6= ( 0 c
d 0 )( a 0

0 b ). Considering these matrices as

2× 2 submatrices of any matrix of size n ≥ 3 gives rise to noncommuting matrices of size n ≥ 3.

Example 2. Consider the abelian group (Z/nZ,+). We can define a multiplication on Z/nZ by

declaring that (a + nZ)(b + nZ) = ab + nZ. We must check that this is well-defined. Given that

a+ nZ = c+ nZ and b+ nZ = d+ nZ, it follows that a = c+ ni and b = d+ nj for some integers

i and j. Consequently, we have that ab = (c + ni)(d + nj) = cd + n(cj + di + nij), from which we

conclude that (a + nZ)(b + nZ) = ab + nZ = cd + nZ = (c + nZ)(d + nZ), as desired. Ultimately,

we find that Z/nZ is a commutative ring. By Bézout’s Theorem, the units of Z/nZ are precisely

the elements a+ nZ such that gcd(n, a) = 1 (hence, there are φ(n) units).

Consider the unique prime factorization n = p1 · · · pk for some (not necessarily distinct) primes

pi. Given that n is composite, it follows that p1 + nZ and p2 · · · pk + nZ are two nonzero elements

of Z/nZ such that (p1 + nZ)(p2 · · · pk + nZ) = p1 · · · pk + nZ = n+ nZ = 0 + nZ. Consequently, we

refer to the elements p1 + nZ and p2 · · · pk + nZ as zero divisors of Z/nZ.
Generally, any nonzero element r of a ring R such that there exists a nonzero element s of R with

rs = 0R is called a zero divisor. On the other hand, if we have that rs = 0R implies that s = 0R,

then we refer to r as a (left-)regular element of R. Essentially, an element r of R is (left-)regular if

and only if it is (left-)cancellable, i.e., if and only if rs = rt implies that s = t for all elements s and

t of R. Given that the only non-regular element of R is 0R (equivalently, all nonzero elements of R

are regular), we refer to R as a domain. Commutative domains are called integral domains.

Example 3. Observe that the integers Z form an integral domain that is not a (skew) field.

Particularly, the only units in Z are ±1 because mn = 1 if and only if n = 1
m

(as rational numbers).

Example 2, Revisited. Given a prime p, we note that Z/pZ is a commutative ring with p elements

and φ(p) = p− 1 units. Consequently, the only non-unit in Z/pZ is the zero element 0 + pZ, hence

every nonzero element of Z/pZ is a unit. We say therefore that Z/pZ is a (finite) field.

Example 3, Revisited. Observe that the rational numbers Q form a field: every nonzero element

is of the form r
s

for some nonzero integers r and s with gcd(r, s) = 1, and we have that r
s
· s
r

= 1.

Proposition 2. If R is a field, then R is an integral domain.

Proof. Every nonzero element r ofR is a unit, hence r−1 exists and satisfies r−1r = 1R. Consequently,

if we have that rs = 0R, then it follows that s = 1Rs = r−1rs = r−10R = 0R,* as desired.

Considering our examples so far, we have the following hierarchy of commutative rings.

finite fields ( fields ( integral domains ( commutative rings

Later, we will specialize this hierarchy to discuss different types of integral domains.
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Proposition 3. If R is a finite integral domain, then R is a field.

Proof. Given any nonzero element x of R, consider the map ϕ : R → R defined by ϕ(r) = rx. By

hypothesis that R is an integral domain, it follows that x is a regular (i.e., cancellable) element of

R so that ϕ is injective: indeed, if we have that ϕ(r) = ϕ(s), then rx = sx implies that r = s.

Considering that R is finite, it follows that ϕ is surjective (because an injective map between finite

sets is a bijection), hence there exists a nonzero element y of R such that xy = 1R. We conclude

that x is a unit. But as x is arbitrary, it follows that every nonzero element of R is a unit.

Q3, January 2016. Let k be a field, and let R be an integral domain such that k ⊆ R. Given

that R is a finite-dimensional vector space over k, prove that R is a field.

Ring Homomorphisms

Given rings R and S, we say that a map ϕ : R→ S is a ring homomorphism whenever we have

that ϕ(1R) = 1S and ϕ(r+ r′) = ϕ(r) +ϕ(r′) and ϕ(rr′) = ϕ(r)ϕ(r′) for all elements r and r′ of R.

Put another way, ϕ is an additive group homomorphism from R to S that maps the multiplicative

identity of R to the multiplicative identity of S and preserves the multiplication of R in S.

Remark 3. If R or S is a rng (i.e., it has no multiplicative identity), then it is not necessary to

check that ϕ(1R) = 1S because at least one of the elements 1R or 1S does not exist.

Given that there exists a ring homomorphism ϕ : R → S, we say that S is an R-algebra. Every

ring R is an algebra over itself via the identity homomorphism id : R → R defined by id(r) = r.

Every ring homomorphism from a ring to itself is called a ring endomorphism.

Proposition 4. Consider the collection End(R) = {ϕ : R → R |ϕ is a ring homomorphism} of

ring endomorphisms of R. We have that End(R) is a (noncommutative) ring under composition.

Proof. We leave the proof as an exercise for the reader.

Example 4. Given a ring R, classify all ring homomorphisms ϕ : Z→ R.

Proof. We leave the proof as an exercise for the reader. One consequence of this exercise is that Z
is referred to as the initial object in the category of rings and ring homomorphisms.

We refer to a bijective ring homomorphism as a ring isomorphism. Given that there exists a ring

isomorphism ϕ : R → S, we say that the rings R and S are isomorphic, and we write R ∼= S.

Like with groups, a bijective ring endomorphism is called a ring automorphism. Given a ring

homomorphism ϕ : R→ S, we refer to the set kerϕ = {r ∈ R |ϕ(r) = 0S} as the kernel of ϕ.

Proposition 5. A ring homomorphism ϕ : R→ S is injective if and only if kerϕ = {0R}.

Proof. Considering that ϕ is an abelian group homomorphism, this follows from Proposition 3 from

the notes on “Groups, Group Actions, and the Class Equation.”

Proposition 6. Given a ring homomorphism ϕ : R→ S, we have that kerϕ is a subrng of R that

is closed under (left- and right-)multiplication by elements of R.
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Proof. Certainly, if 1R is in kerϕ, then ϕ is the zero map, i.e., we have that kerϕ = R:

ϕ(r) = ϕ(r · 1R) = ϕ(r)ϕ(1R) = ϕ(r)0S = 0S

for all elements r of R by Corollary 1. Consequently, we may assume that kerϕ does not contain

1R; we will show that kerϕ is a subrng. By the subring test, it suffices to show that kerϕ is closed

under subtraction and multiplication. Given any two elements r and s of kerϕ, we have that

ϕ(r − s) = ϕ(r)− ϕ(s) = 0S − 0S = 0S and ϕ(rs) = ϕ(r)ϕ(s) = 0S0S = 0S,

hence kerϕ is a subrng. Further, kerϕ is closed under (left- and right-)multiplication by elements

of R by the above displayed equation (if either r or s is in kerϕ, then rs is in kerϕ).

We refer to a subrng I of R that is closed under multiplication by elements of R as a (two-sided)

ideal of R. Often, we will deal with commutative rings, hence a two-sided ideal is simply an ideal,

but in the case that R is noncommutative, we distinguish between left- and right-ideals. Observe

that a proper ideal I of R cannot contain the multiplicative identity of R: if 1R is in I, then by

definition, we have that r = r · 1R is in I for all elements r of R so that I = R.

Example 5. Observe that nZ is an ideal of Z for any integer n because for any integers r and s,

we have that nr − ns = n(r − s), (nr)(ns) = n(nrs), and s(nr) = n(rs) are elements of nZ.

Like with groups, we may consider the ideal generated by a subset of elements of R.

Proposition 7. Given any elements x1, . . . , xn of a commutative ring R, we have that

(x1, . . . , xn)
def
= R〈x1, . . . , xn〉 = {r1x1 + · · ·+ rnxn | ri ∈ R for each integer 1 ≤ i ≤ n}

is an ideal of R. We refer to (x1, . . . , xn) as the ideal generated by x1, . . . , xn. Given that n = 1,

we refer to the ideal (x1) = x1R as the principal ideal generated by x1.

We say that a set of generators {x1, . . . , xn} of an ideal I is a minimal generating set whenever

{x1, . . . , xn} \ {xi} does not generate I for any integer 1 ≤ i ≤ n. Put another way, if we delete

one generator, we obtain a strictly smaller ideal than I. Given that an ideal I has a finite minimal

generating set, we say that I is finitely generated. Consequently, we may define

µ(I) = inf{n ≥ 0 | {x1, . . . , xn} is a minimal generating set of I}.

Later, we will concern ourselves with the minimal number of generators µ(I) of an ideal I, but for

now, we leave the next example as an interesting motivational exercise to the reader.

Example 6. Prove that Z can be generated by an ideal with n elements for each integer n ≥ 1.

Our next proposition establishes that the generators of an ideal are not unique; rather, they can be

chosen strategically so that the presentation of the ideal is more simple.

Proposition 8. Let R be a commutative ring with a finitely generated ideal I = (f1, . . . , fn).

Consider the ideal J = (f1, . . . , u1f1 + · · · + unfn, . . . , fn) for some units u1, . . . , un of R, i.e., the

ideal of R generated by the elements of {f1, . . . , fn, u1f1 + · · ·+ unfn} \ {fi}. We have that I = J.
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Proof. One immediately sees that J ⊆ I because each of the generators of J is an element of I.

Conversely, each of the generators fj of I for j 6= i is an element of J, hence it suffices to prove

that fi is in J. Observe that uifi = u1f1 + · · · + unfn +
∑

j 6=i(−uj)fj is an element of J so that

fi = 1Rfi = (u−1i ui)fi = u−1i (uifi) is in J. We conclude therefore that I ⊆ J.

Example 7. Find the simplest possible generating set of the ideal I = (2, 4, 6, 9) in Z.

By the one-step subgroup test, it follows that an ideal I of R is a normal subgroup of the abelian

group R, hence we have that R/I is an abelian group with respect to the addition defined by

(r+ I) + (s+ I) = (r+ s) + I. Consider the multiplication (r+ I)(s+ I) = rs+ I defined on R/I.

We must check that this is well-defined. Given that r+ I = u+ I and s+ I = v+ I, it follows that

r = u+ i and s = v + j for some elements i and j of I. Consequently, we have that

rs = (u+ i)(v + j) = uv + uj + vi+ ij.

By hypothesis that I is an ideal of R, it follows that uj, vi, and ij are in I so that uj + vi + ij

is in I. We conclude therefore that (r + I)(s + I) = rs + I = uv + I = (u + I)(v + I), as desired.

Ultimately, we conclude that R/I is the quotient ring of R with respect to I.

Proposition 9. Given a ring R, every two-sided ideal I of R is the kernel of a ring homomorphism

from R. Conversely, the kernel of a ring homomorphism from R is a two-sided ideal.

Proof. Given a two-sided ideal I of R, we have that R/I is a ring with respect to the multiplication

(r + I)(s + I) = rs + I. Consequently, we have a ring homomorphism π : R → R/I defined by

π(r) = r+I. Observe that r is in ker π if and only if r+I = 0+I if and only if r is in I, i.e., ker π = I.

Proposition 4 shows that kerϕ is a two-sided ideal for any ring homomorphism ϕ : R→ S.

Proposition 10. A ring homomorphism ϕ : k → R from a field k is either injective or zero.

Proof. Given that ϕ is injective, we are done. Otherwise, there exists a nonzero element r in kerϕ.

By hypothesis that k is a field, it follows that r−1 exists and satisfies r−1r = 1R. Considering that

kerϕ is an ideal, 1R = r−1r is in kerϕ. But this implies that kerϕ = R so that ϕ is zero.

Corollary 2. Given a field k, the zero ideal 0k and k are the only ideals of k.

One of the most important facts about any algebraic structure is the following.

Theorem 1. (First Isomorphism Theorem) Given any rings R and S and a ring homomorphism

ϕ : R→ S, there exists a ring isomorphism ψ : R/ kerϕ→ ϕ(R).

Proof. We must first demonstrate that ϕ(R) is a subring of S. We leave this to the reader. Con-

sidering that kerϕ is an ideal of R, we may view R/ kerϕ as a ring with multiplication defined by

(r+ kerϕ)(s+ kerϕ) = rs+ kerϕ, hence it suffices to find a ring isomorphism ψ : R/ kerϕ→ ϕ(R).

Consider the map ψ : R/ kerϕ → ϕ(R) defined by ψ(r + kerϕ) = ϕ(r). We must establish that ψ

is well-defined, i.e., we must show that if r + kerϕ = s + kerϕ, then ψ(r + kerϕ) = ψ(s + kerϕ).

By definition, we have that r + kerϕ = s + kerϕ if and only if r − s + kerϕ = 0R + kerϕ if and

only if r − s is in kerϕ if and only if ϕ(r − s) = 0S if and only if ϕ(r) − ϕ(s) = 0S if and only

if ϕ(r) = ϕ(s) if and only if ψ(r + kerϕ) = ψ(s + kerϕ). We conclude that ψ is well-defined. By
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hypothesis that ϕ is a ring homomorphism, it follows that ψ is a ring homomorphism, and ψ is

clearly surjective, hence it suffices to show that ψ is injective. Observe that r + kerϕ is in kerψ if

and only if ϕ(r) = ψ(r+ kerϕ) = 0S if and only if r is in kerϕ if and only if r+ kerϕ = 0R + kerϕ

implies that kerψ is trivial so that ψ is injective, as desired.

Theorem 2. (Second Isomorphism Theorem) Given a ring R with a subring S and an ideal I of

R, we have that (S + I)/I ∼= S/(S ∩ I) as quotient rings.

Proof. We must first demonstrate that S+ I = {s+ i | s ∈ S, i ∈ I} is a subring of R such that I is

an ideal of S+ I. Consequently, the quotient ring (S+ I)/I is well-defined. We must then establish

that S∩I is an ideal of S. We leave these details to the reader. Once this is accomplished, it suffices

by the First Isomorphism Theorem to find a surjective ring homomorphism ϕ : S → (S+ I)/I such

that kerϕ = S ∩ I. We leave it to the reader to verify that the map ϕ(s) = s+ I does the job.

Theorem 3. (Third Isomorphism Theorem) Given a ring R with ideals I and J such that I ⊆ J,

we have that (R/I)/(J/I) ∼= R/J as quotient rings.

Proof. We must first demonstrate that I is an ideal of the rng J and that J/I is an ideal of R/I.

We leave these details to the reader. Once this is accomplished, it suffices by the First Isomorphism

Theorem to find a surjective group homomorphism ϕ : R/I → R/J such that kerϕ = J/I. We

leave it to the reader to verify that the map ϕ(r + I) = r + J does the job. Considering that this

map is defined on a quotient ring, we must also establish that this map is well-defined.

Theorem 4. (Fourth Isomorphism Theorem) Given a ring R with an ideal I, there exists a one-to-

one correspondence {subrings of R that contain I} ↔ {subrings of R/I} that sends S 7→ S/I for

any subring S of R that contains I with the following properties.

1.) Given any subrings S and T of R such that I ⊆ S and I ⊆ T, we have that S ⊆ T if and only

if S/I ⊆ T/I. Put another way, this bijection is inclusion-preserving.

2.) Given any subring J of R that contains the ideal I, we have that J is an ideal of R if and

only if J/I is an ideal of R/I.

Ideals

Recall that a ring is an abelian group under addition in which there exists a notion of multiplication

(that may not be commutative). Until now, we have seen that rings have exhibited many of the same

properties as abelian groups, e.g., rings have homomorphisms between them; ideals are analogous

to normal subgroups; quotient rings are analogous to quotient groups; and there four isomorphism

theorems for rings that are analogous to the four isomorphism theorems for groups.

Our immediate aim is to impress that the multiplicative structure of a ring gives it a much richer

theory than that of groups. We say that a proper ideal P of R with the property that rs is in P

implies that either r is in P or s is in P for all elements r and s of R is prime.

Example 8. Consider the ideal 5Z of Z. Given any elements m and n of Z such that mn is in 5Z, by

definition, we have that mn = 5i for some integer i, from which it follows that 5 |mn. Considering

that 5 is a prime number, we must have that 5 |m or 5 |n, hence 5Z is a prime ideal of Z. Ultimately,

this example serves to show that prime ideals are a generalization of prime numbers.
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Proposition 11. Given a ring R, an ideal P of R is prime if and only if R/P is a domain.

Proof. We will assume first that P is prime. We claim that R/P is a domain, i.e., all nonzero

elements of R/P are regular. Given any nonzero elements r + P and s + P of R/P, consider the

product rs+ P = (r + P )(s+ P ). On the contrary, if it were the case that rs+ P = 0R + P, then

we would have that rs is in P. By the primality of P, we would therefore have that either r is in

P or s is in P so that either r + P = 0R + P or s + P = 0R + P — a contradiction. We conclude

therefore that all nonzero elements of R/P are regular so that R is a domain.

Conversely, we will assume that R/P is a domain. Given any elements r and s in R such that

rs in P, we have that (r + P )(s+ P ) = rs + P = 0R + P. By hypothesis that R/P is a domain, it

follows that r + P = 0R + P or s+ P = 0R + P so that r is in P or s is in P, i.e., P is prime.

Corollary 3. There exist ideals that are not prime.

Proof. Consider the ideal 4Z of Z. By Example 2, the element 2 + 4Z of Z/4Z is a zero divisor,

hence Z/4Z is not a domain. By Proposition 11, therefore, 4Z is not a prime ideal of Z.

Example 8, Revisited. Consider the ideal 5Z of Z. Given any ideal nZ of Z such that 5Z ⊆ nZ,
it follows that we may write 5 = ni for some integer i (because 5 · 1 is in 5Z). But this implies that

n | 5 so that n = 1 or n = 5. Consequently, we have that nZ = 5Z or nZ = 1Z = Z.

We say that a proper ideal M of a ring R is maximal if it has the property that M ⊆ N for some

ideal N of R implies that N = M or N = R. Put another way, a maximal ideal M is the largest

(with respect to inclusion) proper ideal of R that contains M.

Proposition 12. Given a ring R, an ideal M of R is maximal if and only if R/M is a field.

Proof. We will assume first that M is maximal. We claim that R/M is a field, i.e., all nonzero

elements of R/M are units. Given any nonzero element r+M of R/M, we must produce an element

s+M of R/M such that rs+M = (r+M)(s+M) = 1R +M. Put another way, we must produce

an element s of R−M such that rs− 1R = m for some element m of M. Consider the ideal

N = M + rR = {m+ rs |m ∈M and s ∈ R}.

Given any element m of M, we have that m = m + r0R is in N so that M ⊆ N. Considering that

r = 0R + r1R is in N and not in M (because r + M is nonzero), it follows that M 6= N. By the

maximality of M, we have therefore that N = R so that 1R = m+ rs for some element s of R. We

claim that s is not in M. For if it were in M, then rs would be in m so that 1R = m+ rs would be

in M, and ultimately, we would have that M = R — a contradiction. Consequently, we must have

that s is not in M so that s + M is nonzero. Further, it follows from the identity rs − 1R = −m
that rs− 1R = 0R +M so that (r +M)(s+M) = rs+M = 1R +M, as desired.

Conversely, we will assume that R/M is a field. By the Fourth Isomorphism Theorem, we have

that M ⊆ N for some ideal N of R if and only if N/M ⊆ R/M. By Corollary 1, the only ideals of a

field are the zero ideal and the field itself, hence we have that N/M = {0R +M} or N/M = R/M.

But this implies that N = M or N = R, hence M is maximal, as desired.

Corollary 4. Every maximal ideal is prime, but there exist prime ideals that are not maximal.

7



Proof. By Proposition 12, given a maximal ideal M of a ring R, we have that R/M is a field.

Consequently, every nonzero element of R/M is a unit and must therefore be regular. (Why?) We

conclude that R/M is a domain, hence by Proposition 11, it follows that M is prime.

On the other hand, given a field k, consider the set k[x, y] of polynomials in the variables x and y

with coefficients in k. Observe that k[x, y] is a commutative ring with multiplicative identity 1k and

additive identity 0k. By Proposition 9, an ideal I of k[x, y] is the kernel of a ring homomorphism from

k[x, y]. Consider the map ϕ : k[x, y] → k[x] defined by ϕ(p(x, y)) = p(x, 0). Because a polynomial

in k[x, y] can be viewed as a function from k2 to k, it follows that ϕ is a ring homomorphism.

Consequently, kerϕ is an ideal of k[x, y]. Observe that k[x] is a domain, but the variable x is not a

unit, hence k[x] is not a field. We conclude that kerϕ is a prime ideal that is not maximal.

Q1a, January 2018. Consider the ring R = C[x, y, z]. Prove that I = (x, y) is a prime ideal in R.

Q5, August 2019. Consider the ring R = Q[x, y, z]/I, where I = (x2y − z5).

(a.) Prove that R is not a field. Determine with proof whether R is a domain.

(b.) Determine with proof whether J = (x̄, ȳ) is a prime ideal of R.

Considering our examples so far, we have the following hierarchy of ideals.

maximal ideals ( prime ideals ( ideals

We will now discuss how to construct new ideals from old. Given some ideals I and J of a ring R

as sets, it is natural to consider the sets I ∪ J and I ∩ J. Considering that I and J are also subrngs

of R, we may also consider I + J = {i+ j | i ∈ I, j ∈ J} and IJ = {
∑n

k=1 ikjk | ik ∈ I, jk ∈ J}.

Example 9. Let R be a ring with (two-sided) ideals I and J. Prove that the set I ∗ J = {ij | i ∈
I, j ∈ J} of products of element an in I and an element of J is not an ideal of R.

Proposition 13. Given any ideals I and J of a ring R, we have that I ∩J, I +J, and IJ are ideals

of R with IJ ⊆ I ∩ J ⊆ I, J ⊆ I + J ; however, the set I ∪ J is not generally an ideal.

Proof. We leave it as an exercise to the reader to prove that I ∩ J, I + J, and IJ are ideals of

R. Once this is established, consider an element
∑n

k=1 ikjk of IJ. By hypothesis that I and J are

(two-sided) ideals of R, it follows that ikjk is in I because ik is in I and jk is in R and ikjk is in J

because ik is in R and jk is in J for each integer 1 ≤ k ≤ n. We conclude that IJ ⊆ I ∩J. Certainly,

we have that I ∩ J ⊆ I and I ∩ J ⊆ J. Last, for any element i of I, we have that i = i + 0R is in

I + J because J is a subrng of R. We have therefore that I ⊆ I + J and likewise J ⊆ I + J.

Let I and J be distinct proper nontrivial ideals of R. On the contrary, we will assume that I ∪J
is an ideal of R. Consequently, I ∪ J is a subrng of R and hence must be closed under subtraction.

Given any nonzero element i of I \ J and j of J \ I, we must therefore have that i− j is in I ∪ J.
But this implies that either i− j ∈ I so that j ∈ I or i− j ∈ J so that i ∈ J — a contradiction.

Corollary 5. Let R be a ring with finitely generated ideals I = (x1, . . . , xm) and J = (y1, . . . , yn).

We have that IJ = (xiyj | 1 ≤ i ≤ m and 1 ≤ j ≤ n). Put another way, the product of two finitely

generated ideals I and J is finitely generated by the products of the generators of I and J.
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Proof. By Proposition 13, it follows that IJ is an ideal of R. Given any element i ∈ I and j ∈ J,
we have that i = r1x1 + · · ·+ rmxm and j = s1y1 + · · ·+ snyn. Consequently, we find that

ij = (r1x1 + · · ·+ rmxm)(s1y1 + · · ·+ snyn) =
m∑
i=1

n∑
j=1

risjxiyj

is an element of (xiyj | 1 ≤ i ≤ m and 1 ≤ j ≤ n). Consequently, each of the elements in the sum∑n
k=1 ikjk is in (xiyj | 1 ≤ i ≤ m and 1 ≤ j ≤ n), hence we find that IJ ⊆ (xiyj | 1 ≤ i ≤ m and 1 ≤

j ≤ n). Conversely, for any integers 1 ≤ i ≤ m and 1 ≤ j ≤ n, we have that xi ∈ I and yj ∈ J so that

xiyj ∈ IJ. Considering that IJ is an ideal of R, it follows that every R-linear combination of elements

xiyj for some integers 1 ≤ i ≤ m and 1 ≤ j ≤ n so that (xiyj | 1 ≤ i ≤ m and 1 ≤ j ≤ n) ⊆ IJ.

Our next proposition reasserts that prime ideals function analogously to prime integers.

Proposition 14. Given a prime ideal P of a ring R and ideals I and J of R such that IJ ⊆ P, we

have that I ⊆ P or J ⊆ P.

Proof. We may assume that J 6⊆ P and subsequently establish that I ⊆ P.* Given any element

i ∈ I, we have that ij ∈ P for every element j ∈ J by hypothesis that IJ ⊆ P. Considering that

J 6⊆ P, there exists an element j0 ∈ J such that j0 /∈ P. By the primality of P and the fact that

ij0 ∈ P, we must have that i ∈ P. We conclude therefore that I ⊆ P, as desired.

*Convince yourself that for some statements A,B, and C, there is a logical equivalence

(A =⇒ (B ∨ C)) ⇐⇒ ((A ∧ ¬C) =⇒ B).

Q2, August 2018. For each of the following claims, provide a proof or an explicit counterexample.

(a.) Consider the ring A of continuous functions f : (0, 1)→ R with ideal Iα = {f ∈ A | f(α) = 0}.

(i.) Iα is a maximal ideal.

(ii.) I1/2 ∩ Iπ/4 is a prime ideal.

(iii.) (0) is a prime ideal.

(c.) (x̄) is a prime ideal in R = C[x, y]/(xy).

Q5c, August 2019. Consider the ring R = Q[x, y, z]/I, where I = (x2y − z5). Prove that for the

ideal J = (x̄, ȳ) of R, we have that z̄5 ∈ J2 and yet z̄4 /∈ J2.

Proposition 15. Given an ascending chain I1 ⊆ I2 ⊆ I3 ⊆ · · · of ideals of a ring R, we have that

∪∞n=1In is an ideal of R.

Proof. It suffices to show that ∪∞n=1In is closed under subtraction and multiplication by elements of

R. We leave the details as an exercise for the reader.

Q2, August 2013. Consider an integral domain R and a collection {Pn}∞n=1 of prime ideals.

(a.) Prove that if P1 ⊇ P2 ⊇ P3 ⊇ · · · , then ∩∞n=1Pn is a prime ideal.
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(b.) Give an explicit counterexample to part (a.) when the primes do not form a descending chain.

Our next two propositions show that every ring possesses at least one maximal ideal, and moreover,

that maximal ideals are actually ubiquitous in a commutative ring. We note that the ideas contained

in the proofs are quite common in commutative algebra. We first need a technical lemma.

Theorem 5. (Zorn’s Lemma) Every partially ordered set S with the property that every chain in

S has an upper bound in S contains at least one maximal element.

Proposition 16. Every nonzero ring possesses a maximal ideal.

Proof. Consider the collection S = {I ( R | I is an ideal of R} of proper ideals of R. Observe that

S is partially ordered by set inclusion, and it is nonempty because it contains the zero ideal {0R}.
Consequently, we seek to employ Zorn’s Lemma. Consider a chain I1 ⊆ I2 ⊆ I3 ⊆ · · · of ideals in

S. By Proposition 15, it follows that ∪∞n=1In is an ideal of R. Further, it is a proper ideal: if it were

the case that 1R ∈ ∪∞n=1In, then we would have that 1R ∈ In for some integer n ≥ 1 so that In = R

— a contradiction to our assumption that In is a proper ideal of R. Ultimately, we have established

that every chain in S has an upper bound in S, hence S has a maximal element. By definition, this

maximal (with respect to inclusion) element is a maximal ideal of R.

Proposition 17. Every proper ideal of a nonzero ring is contained in a maximal ideal.

Proof. Given an ideal I ( R, consider the collection S = {J ( R | J is an ideal of R and I ⊆ J} of

proper ideals of R that contain I. We leave it as an exercise to the reader to establish that there

exists a maximal element M of S. (Use Zorn’s Lemma.) By definition, we have that M is a maximal

ideal of R that contains I. (One other way to see it is that if N is a proper ideal of R that strictly

contains M, then by hypothesis, N cannot contain I. But then, the sum I +N is an ideal of R that

contains I and M, hence we must have that I +N = R so that M is maximal.)

Q4, January 2014. Consider a commutative ring R with distinct maximal ideals M1 and M2.

(a.) Prove that for any integer n ≥ 1, we have that R = Mn
1 + Mn

2 , where Mn
i denotes the ideal

consisting of all finite sums of n-fold products of elements in Mi.

(b.) Consider the polynomial ring R[x, y]. Given a positive integer n ≥ 1 and two distinct points

P1 = (a1, b1) and P2 = (a2, b2) in R2, prove that for each f(x, y) ∈ R[x, y], there exist g(x, y)

and h(x, y) in R[x, y] such that

(i.) f(x, y) = g(x, y) + h(x, y);

(ii.) g(x, y) and all of its partial derivatives of order < n vanish at P1; and

(iii.) h(x, y) and all of its partial derivatives of order < n vanish at P2.

Q2, January 2017. Given an integral domain R, assume that there exists a nonzero, non-unit a

in R such that for every element r in R, there exists a unit u and a non-negative integer n with

r = uan. We say in this case that R is a discrete valuation ring.

(a.) Prove that P = aR is the unique maximal ideal of R.

(b.) Prove that ∩∞n=1P
n = (0R).

(c.) Prove that R
[
1
a

]
=
{
rn

1
an

+ · · ·+ r1
1
a

+ r0 | r0, r1, . . . , rn ∈ R and n ≥ 0
}

is a field.
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The Chinese Remainder Theorem

One of the most celebrated theorems in number theory remains the Chinese Remainder Theorem.

Our aim in this section is to generalize the Chinese Remainder Theorem to a statement about rings

and ideals. Ultimately, it will be shown that the Chinese Remainder Theorem from number theory

is a consequence of the Chinese Remainder Theorem for commutative rings as applied to R = Z.

Theorem 6. Let R be a commutative ring with pairwise comaximal ideals I1, . . . , In, i.e., ideals

I1, . . . , In that satisfy Ii + Ij = R whenever i and j are distinct. We have that

(i.)
R

I1 ∩ · · · ∩ In
∼=
R

I1
× · · · × R

In
and

(ii.) I1 · · · In = I1 ∩ · · · ∩ In.

Proof. We proceed by induction on the number n of pairwise comaximal ideals. Given that n = 2,

consider the ring homomorphism ϕ : R → (R/I1) × (R/I2) defined by ϕ(r) = (r + I1, r + I2). We

claim that ϕ is surjective, hence by the First Isomorphism Theorem, we have that

R

I1
× R

I2
∼=

R

kerϕ
.

Observe that r is in kerϕ if and only if r + I1 = 0 + I1 and r + I2 = 0 + I2 if and only if r is in I1
and r is in I2 if and only if r is in I1 ∩ I2, hence we have that kerϕ = I1 ∩ I2, as desired.

We will establish now that ϕ is surjective. Given any elements r+ I1 and s+ I2, we wish to find

an element t of R such that ϕ(t) = (r+ I1, s+ I2). By hypothesis that I1 and I2 are comaximal, we

have that I1 + I2 = R so that 1R = i + j for some elements i of I1 and j of I2. Consequently, we

may write r = ri+ rj and s = si+ sj so that on the level of cosets, we have that

r + I1 = ri+ rj + I1 = 0R + rj + I1 = rj + I1 and

s+ I2 = si+ sj + I2 = si+ 0R + I2 = si+ I2.

But this implies that t = rj+si satisfies ϕ(t) = (r+I1, s+I2) so that ϕ is surjective.* By Proposition

13, we have that I1I2 ⊆ I1 ∩ I2, hence it suffices to show that I1 ∩ I2 ⊆ I1I2. Every element x of

I1 ∩ I2 can be written as x = 1Rx = (i + j)x = ix + xj for some i in I1 and j in I2. Considering

that ix is in I1I2 and jx is in I1I2, it follows that x = ix+ jx is in I1I2 (because I1I2 is an ideal).

We will assume inductively that the claim holds for some integer n ≥ 3. Consider the map

ϕ : R→ R

I1 · · · In−1
× R

In

defined by ϕ(r) = (r + I1 · · · In−1, r + In). By induction, it suffices to show that ϕ is surjective and

kerϕ = I1 · · · In−1 ∩ In. Considering that Ii and In are comaximal for all integers 1 ≤ i ≤ n − 1,

it follows that Ii + In = R for all integers 1 ≤ i ≤ n − 1. Consequently, there exist elements

i1, . . . , in−1, j1, . . . , jn−1 such that ik + jk = 1R, ik ∈ Ik, and jk ∈ In for each integer 1 ≤ k ≤ n− 1.

By taking the product of all of these sums, we obtain an element i of I1 · · · In−1 and j of In such

that i+j = 1R.** By the second paragraph above, this is sufficient to prove that ϕ is surjective.
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*Explicitly, we have that

ϕ(t) = ϕ(rj + si) = (rj + si+ I1, rj + si+ I2) = (rj + I1, si+ I2) = (r + I1, s+ I2).

**Observe that

(i1 + j1) · · · (in−1 + jn−1) = i1 · · · in−1 + j1 · · · jn−1 + other terms,

where the quantity “other terms” involves products of things in Ik and In — a subset of In. Con-

sequently, we may take i = i1 · · · in−1 and j = j1 · · · jn−1 + other terms.

We note that the first property of the Chinese Remainder Theorem holds for two-sided ideals of

any (not necessarily commutative) ring; however, as the proof bears out, the second property does

not hold in general for noncommutative rings (as it requires some product to commute).

Corollary 6. Let R be a commutative ring. Every pair of distinct maximal ideals of R are comax-

imal. Further, the intersection of any two distinct maximal ideals is the product of those ideals.

Proof. Consider any pair of distinct maximal ideals M1 and M2 of R. By Proposition 13, we have

that M1 + M2 is an ideal of R that contains M1 (and M2). By the maximality of M1 (or M2),

we conclude that M1 + M2 = R, hence M1 and M2 are comaximal. By the Chinese Remainder

Theorem, therefore, we have that M1 ∩M2 = M1M2, as desired.

Q2b, August 2010. Consider the polynomial ring Z[x]. Given that the ideals M1 = (3, x2 +x+2)

and M2 = (2, x2 + x+ 1) of Z[x] are maximal, find with proof a set of generators for M1 ∩M2.

Extension and Contraction of Ideals

Let R and S be commutative rings. Recall that if there exists a ring homomorphism ϕ : R → S,

we refer to S as an R-algebra. Of course, one might naturally wonder what becomes of the image

ϕ(I) of an ideal I of R under the ring homomorphism ϕ. One of the most immediate examples

of an R-algebra is the polynomial ring R[x] over any commutative ring R: in this case, the map

ι : R→ R[x] is simply the inclusion map ι(r) = r (considered as the constant polynomial). Observe

that for the ring of integers Z, the image of the ideal 2Z under the inclusion map ι : Z → Z[x] is

no longer an ideal. Explicitly, we have that ι(2Z) consists of all integer multiples of 2, hence the

element 2x is not in ι(2Z), from which it follows that ι(2Z) is not an ideal of Z[x] (as it is not closed

under multiplication by ring elements). Consequently, we may clear up this problem by defining

the extension of 2Z in Z[x] to be the ideal 2Ze = ι(2Z)Z[x] generated by ι(2Z) in Z[x]. Generally,

for an ideal I of a ring R, the extension of I via the ring homomorphism ϕ : R → S is the ideal

generated by the image ϕ(I) of I under ϕ in S, i.e., we have that Ie = ϕ(I)S.

Proposition 18. Given a surjective ring homomorphism ϕ : R → S of commutative rings and an

ideal I of R, we have that ϕ(I) is an ideal of S — namely, we have that ϕ(I) = Ie.

Proof. We will prove first that ϕ(I) is an ideal of S. By the subrng test, it suffices to show that

ϕ(I) is closed under subtraction and multiplication by elements of S. Given any two elements ϕ(i)

and ϕ(j) in ϕ(I), we have that ϕ(i)−ϕ(j) = ϕ(i− j). Considering that I is an ideal of R, it follows
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that i − j is in I so that ϕ(i) − ϕ(j) = ϕ(i − j) is in ϕ(I). Given any element s of S, there exists

an element r of R such that s = ϕ(r) by hypothesis that ϕ is surjective. Consequently, we have

that sϕ(i) = ϕ(r)ϕ(i) = ϕ(ri). Considering that I is an ideal of R, it follows that ri is in I so that

sϕ(i) = ϕ(ri) is in ϕ(I). We conclude that ϕ(I) is an ideal of S. By hypothesis that ϕ is surjective,

we have that S = ϕ(R) so that Ie = ϕ(I)S = ϕ(I)ϕ(R) = ϕ(IR) = ϕ(I), as desired.

Remark 4. Prime ideals do not necessarily extend to prime ideals.

Proof. Consider the set Z[
√

2] = {a + b
√

2 | a, b ∈ Z} ⊆ R. By the subring test, it suffices to prove

that Z[
√

2] is closed under subtraction and multiplication and contains the multiplicative identity

1 of R. We leave these details to the reader. Once that is accomplished, we may consider the ring

homomorphism ι : Z→ Z[
√

2] defined by ι(n) = n+ 0
√

2. Observe that the ideal 2Z of Z is prime

(because 2 is a prime integer); however, considering that 2 =
√

2 ·
√

2 = (0 + 1 ·
√

2)(0 + 1 ·
√

2) in

Z[
√

2] and
√

2 is not an element of 2Ze = ι(2Z)Z[
√

2] in Z[
√

2], it follows that 2Ze is not prime.

Our proof also establishes that maximal ideals do not necessarily extend to maximal ideals because

every maximal ideal is prime by Corollary 4.

Conversely, one might naturally wonder what can be said of the preimage of an ideal J of S

under the commutative ring homomorphism ϕ : R→ S. We cut right to the chase.

Proposition 19. Given a ring homomorphism ϕ : R → S of commutative rings and an ideal J of

S, we have that ϕ−1(J) = {r ∈ R |ϕ(r) ∈ J} is an ideal of S. We refer to the ideal ϕ−1(J) as the

contraction of J via ϕ, and we write ϕ−1(J) = J c.

Proof. By the subrng test, it suffices to show that J c is closed under subtraction and multiplication

by elements of R. By definition, given any elements r and s of J c, we have that ϕ(r) and ϕ(s) are

in J. By hypothesis that J is an ideal of S, we have that ϕ(r+ s) = ϕ(r) +ϕ(s) is in J so that r+ s

is in J c. Given any element t of R, we have that ϕ(t) is in S. Considering that J is an ideal of S

and r is in J c, it follows that ϕ(t)ϕ(r) = ϕ(tr) is in J so that tr is in J c.

Proposition 20. Contractions of prime ideals are prime.

Proof. Let P be a prime ideal of S. Consider some elements r and s of P c such that rs is in P c. By

definition, we have that ϕ(r)ϕ(s) = ϕ(rs) is in P. By the primality of P, therefore, we have that

ϕ(r) is in P or ϕ(s) is in P so that r is in P c or s is in P c, as desired.

Later, when we the integral closure of a ring, we will say more about contractions of ideals.

Oka Families of Ideals

Given any two ideals I and J of a commutative ring R, consider the set

(I :R J) = {r ∈ R | rj ∈ I for all j ∈ J} = {r ∈ R | rJ ⊆ I}.

Proposition 21. We have that (I :R J) is an ideal of R called the colon ideal of I and J.

Proof. We leave the details as an exercise to the reader.

13



Before moving on to the main topic of this section, we note that there are many interesting properties

to explore involving the colon of two ideals. For instance, one should prove the following.

Proposition 22. Let I, J, and K be ideals of a commutative ring R.

(i.) We have that I ⊆ (I :R J), (I :R R) = I, and (R :R I) = R.

(ii.) We have that (I :R J)J ⊆ I. Equality holds if and only if J is principal and I ⊆ J.

(iii.) We have that ((I :R J) :R K) = (I :R JK) = ((I :R K) :R J).

(iv.) For any ideals {Iα}α∈A of R, we have that ((∩α∈AIα) :R J) = ∩α∈A(Iα :R J).

(v.) For any ideals {Jα}α∈A of R, we have that (I :R
∑

α∈A Jα) = ∩α∈A(I :R Jα).

Consider a family F of ideals of a commutative ring R. We say that F is Oka whenever

(a.) R is an ideal of F and

(b.) for any ideal I of R and any element x of R,

(i.) I + xR is in F and

(ii.) (I :R xR) is in F

together imply that I is in F.

Our next proposition illustrates the importance and usefulness of Oka families of ideals.

Proposition 23. Let F be an Oka family of ideals of a commutative ring R. An ideal I of R that

is maximal (with respect to inclusion) with respect to the property that I is not in F is prime.

Proof. Let I be an ideal of R that is maximal (with respect to inclusion) with respect to the property

that I is not in F. We will establish that if x and y are any elements of R such that xy is in I, then

either x is in I or y is in I. On the contrary, let us assume that neither x nor y is in I. Consequently,

the ideal I + xR strictly contains I. By hypothesis that I is maximal (with respect to inclusion)

with respect to the property that I is not in F, it follows that I + xR is in F. By property (i.) of

Proposition 22, we have that I ⊆ (I :R xR). If these ideals were equal, then y would be in I (because

xy is in I so that y is in (I :R xR) = I) — a contradiction. Consequently, the ideal (I :R xR)

strictly contains I, and as before, it follows that (I :R xR) is in F. But by assumption that F is an

Oka family, it follows that I is in F — a contradiction. We conclude that x is in I or y is in I.

One immediate consequence of Proposition 23 is that we can generate prime ideals of commutative

rings by recognizing a collection of ideals as an Oka family F and finding the largest (with respect

to inclusion) ideal that is not contained in F. We demonstrate this idea as follows.

Corollary 7. Let R be a commutative ring. Every maximal (with respect to inclusion) element of

{I ⊆ R | I is an ideal, and I is not principal} is prime.
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Proof. We will establish that F = {I ⊆ R | I is a principal ideal} is an Oka family. By Proposition

23, therefore, any ideal that is maximal (with respect to inclusion) with respect to the property

that it is not in F is prime. Put another way, every maximal (with respect to inclusion) element of

{I ⊆ R | I is an ideal, and I is not principal} is prime, as desired.

Of course, we have that R = 1RR is a principal ideal, hence R is in F. Consider an ideal I of

R and any element x of R such that I + xR is in F and (I :R xR) is in F. We claim that I is in

F. Considering that I + xR and (I :R xR) are in F, by definition, we have that I + xR = aR and

(I :R xR) = bR for some elements a and b of R. By property (v.) of Proposition 22, we have that

(I :R I + xR) = (I :R I) ∩ (I :R xR) = R ∩ (I :R xR) = (I :R xR) = bR. By property (ii.) of

Proposition 22, we have that I = (I :R I + xR)(I + xR) because I + xR is principal by hypothesis

and I ⊆ I + xR (by Proposition 13). We conclude therefore that

I = (I :R I + xR)(I + xR) = (I :R xR)(I + xR) = (bR)(aR) = (ab)R

is principal. Put another way, we have that I is in F, hence F is an Oka family.

Corollary 8. Let R be a commutative ring. If every prime ideal of R is principal, then every ideal

of R is principal.

Proof. We prove the contrapositive, i.e., we will assume that there exists a non-principal ideal of R,

and we will show that there exists a prime non-principal ideal of R. By hypothesis, the collection

N = {I ⊆ R | I is an ideal, and I is not principal} is nonempty. Certainly, it is partially ordered

by inclusion. By Zorn’s Lemma, if every chain of elements of N has an upper bound in N , then

there exists a maximal (with respect to inclusion) element of N that is prime by Corollary 5.

Consider a chain I1 ⊆ I2 ⊆ · · · of elements of N . By Proposition 15, the set ∪∞n=1In is an ideal

of R. On the contrary, if it were principal, then there would exist an element x of R such that

∪∞n=1In = xR. Considering that x = x ·1R is in xR = ∪∞n=1, it follows that x is in In for some integer

n ≥ 1. But then, we have that xr is in In for every element r of R by hypothesis that In is an

ideal of R, from which it follows that xR ⊆ In ⊆ ∪∞n=1In ⊆ xR so that In = xR is principal — a

contradiction. We conclude that ∪∞n=1In is not principal so that ∪∞n=1In is in N , as desired.

Later, we shall see that the structure of prime ideals of rings with certain properties determines the

structure of all ideals of that ring in a similar fashion to Corollary 8.

Noetherian Rings

Unfortunately, this note must come to an end at some point, so despite the fact that there are

many, many interesting things to discuss in ring theory that rely only on first principles, we must

leave some of those for the future. But we saved the best topic for last.

We say that a ring R is Noetherian if any of the following conditions holds.

(i.) Every ascending chain of ideals of R terminates. Explicitly, for any ascending chain of ideals

I1 ⊆ I2 ⊆ · · · of R, there exists an integer N ≥ 1 sufficiently large so that Im = In for all

integers m,n ≥ N. (If R is not commutative, then this must hold for left- and right-ideals.)

(ii.) Every nonempty collection of ideals of R has a maximal (with respect to inclusion) element.
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(iii.) Every proper ideal of R is finitely generated (cf. Proposition 7).

Proposition 24. The three conditions above are equivalent.

For the sake of brevity, we do not include a proof of Proposition 24; however, the interested reader

should endeavor to prove it. One can readily show that (i.) and (ii.) are equivalent by chasing the

definitions; then, it is advisable to prove that (iii.) implies (i.) and ¬(iii.) implies ¬(i.).

Even though the brilliant mathematician Emmy Noether discovered the Noetherian property of

rings in the early 20th century, much of contemporary commutative algebra is undertaken in the

context of Noetherian rings (and modules). One will work almost exclusively in this setting if one

chooses to study commutative algebra at the University of Kansas. Gradually, we shall see and

understand the importance of the Noetherian property, but for now, we show that the collection of

finitely generated ideals of a ring form an Oka family (hence it suffices to establish that all of the

prime ideals of a ring are finitely generated in order to conclude that a ring is Noetherian).

Proposition 25. Let R be a commutative ring. Every maximal (with respect to inclusion) element

of {I ⊆ R | I is an ideal, and I is not finitely generated} is prime.

Proof. We will establish that F = {I ⊆ R | I is a finitely generated ideal} is an Oka family. By

Proposition 23, therefore, any ideal that is maximal (with respect to inclusion) with respect to the

property that it is not in F is prime. Put another way, every maximal (with respect to inclusion)

element of {I ⊆ R | I is an ideal, and I is not finitely generated} is prime, as desired.

Of course, we have that R = 1RR is a principal ideal, hence R is finitely generated so that R is

in F. Consider an ideal I of R and any element a of R such that I + aR is in F and (I :R aR) is in

F. We claim that I is in F. By hypothesis, there exist elements x1, . . . , xm, y1, . . . , yn of R such that

I + aR = (x1, . . . , xm) and (I :R aR) = (y1, . . . , yn). Each of the generators of I + aR is itself an

element of I + aR, hence we have that xi = zi + eia for some elements ei ∈ R and zi ∈ I. Likewise,

each of the generators of (I :R aR) is in (I :R aR), hence we have that yja is in I. We claim that

I = (z1, . . . , zm, y1a, . . . , yna). Given an element i ∈ I, we have that i = i + 0Ra is in I + aR so

that i =
∑

i rixi =
∑

i ri(zi + eia) =
∑

i rizi + a(
∑

i eiri). Rearranging this identity, we find that

i−
∑

i rizi = a(
∑

i eiri) so that
∑

i eiri is in (I :R aR). We have therefore that
∑

i eiri =
∑

j sjyj so

that i =
∑

i rizi + a(
∑

j sjyj) =
∑

i rizi +
∑

j sj(yja) and I ⊆ (z1, . . . , zm, y1a, . . . , yna). Conversely,

each of the elements z1, . . . , zm, y1a, . . . , yna is in I so that any R-linear combination of them is in

I by hypothesis that I is an ideal of R. We conclude that I = (z1, . . . , zm, y1a, . . . , yna).

Corollary 9. Let R be a commutative ring. If every prime ideal of R is finitely generated, then

every ideal of R is finitely generated. Consequently, if every prime ideal of R is finitely generated,

then R is a Noetherian ring.

Proof. We leave the proof as an exercise to the reader. (Mimic the proof of Corollary 8.)
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